Borna disease virus replication in organotypic hippocampal slice cultures from rats results in selective damage of dentate granule cells.
نویسندگان
چکیده
In the hippocampus of Borna disease virus (BDV)-infected newborn rats, dentate granule cells undergo progressive cell death. BDV is noncytolytic, and the pathogenesis of this neurodevelopmental damage in the absence of immunopathology remains unclear. A suitable model system to study early events of the pathology is lacking. We show here that organotypic hippocampal slice cultures from newborn rat pups are a suitable ex vivo model to examine BDV neuropathogenesis. After challenging hippocampal slice cultures with BDV, we observed a progressive loss of calbindin-positive granule cells 21 to 28 days postinfection. This loss was accompanied by reduced numbers of mossy fiber boutons when compared to mock-infected cultures. Similarly, the density of dentate granule cell axons, the mossy fiber axons, appeared to be substantially reduced. In contrast, hilar mossy cells and pyramidal neurons survived, although BDV was detectable in these cells. Despite infection of dentate granule cells 2 weeks postinfection, the axonal projections of these cells and the synaptic connectivity patterns were comparable to those in mock-infected cultures, suggesting that BDV-induced damage of granule cells is a post-maturation event that starts after mossy fiber synapses are formed. In summary, we find that BDV infection of rat organotypic hippocampal slice cultures results in selective neuronal damage similar to that observed with infected newborn rats and is therefore a suitable model to study BDV-induced pathology in the hippocampus.
منابع مشابه
Synaptic connections from multiple subfields contribute to granule cell hyperexcitability in hippocampal slice cultures.
Limbic status epilepticus and preparation of hippocampal slice cultures both produce cell loss and denervation. This commonality led us to hypothesize that morphological and physiological alterations in hippocampal slice cultures may be similar to those observed in human limbic epilepsy and animal models. To test this hypothesis, we performed electrophysiological and morphological analyses in l...
متن کاملBeneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats
Objective: The hippocampal formation, particularly the dentate gyrus (DG), shows age-related morphological changes that could cause memory decline. It is indicated that Boswellia resins attenuates memory deficits and the major component of Boswellia serrata (Bs) gum resin, beta boswellic acid increased neurite outgrowth and branching in hippocampal neurons. This study was designed to investigat...
متن کاملCytoskeleton disruption causes apoptotic degeneration of dentate granule cells in hippocampal slice cultures.
Colchicine, a potent microtubule-depolymerizing agent, is well known to selectively kill dentate granule cells in the hippocampal formation in vivo. Using organotypic cultures of rat entorhino-hippocampal slices, we confirmed that in vitro exposure to 1 microM and 10 microM of colchicine reproduced a specific degeneration of the granule cells after 24 h. Similar results were obtained with other...
متن کاملThe hyperexcitability of dentate granule neurons in organotypic hippocampal slice cultures is due to reorganization of synaptic inputs in vitro
Organotypic hippocampal slice cultures (OHSCs) provide the experimental flexibility of cell culture while leaving much of the natural neuronal connectivity intact. Previously, it was shown that the functional and morphological features of CA1 pyramidal neurons in OHSCs resemble, to a surprising extent, those of CA1 neurons in the acute brain slice preparation. However, the extent to which the c...
متن کاملTime-lapse imaging reveals highly dynamic structural maturation of postnatally born dentate granule cells in organotypic entorhino-hippocampal slice cultures
Neurogenesis of hippocampal granule cells (GCs) persists throughout mammalian life and is important for learning and memory. How newborn GCs differentiate and mature into an existing circuit during this time period is not yet fully understood. We established a method to visualize postnatally generated GCs in organotypic entorhino-hippocampal slice cultures (OTCs) using retroviral (RV) GFP-label...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 79 18 شماره
صفحات -
تاریخ انتشار 2005